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Approximately in the thirties the demands of practice lead to the necessity for studying 
a number of contact problems of elasticity theory, which differed considerably in formu- 

lation from the classical problems of Boussinesq,Hertz and Sadovskii. The first investi- 
gations of such problems, namely, contact problems for an elastic strip, layer and cylinder, 

were performed in p - 51. However, the explosive development of this problem, which 
we agree to call “nonclassical contact problems”, is only observed at the beginning of 

the sixties, when the appropriate mathematical opportunities for effective solution of 
complex mixed problems of mathematical physics became manifest. 

Recent experience has shown convincingly that the most effective apparatus for obtain- 
ing practically applicable approximate solutions of nonclassical contact problems are 
asymptotic methods. The first attempts in this area were in [6 and ‘I]. 

In the majority of cases nonclassical contact problems of elasticity theory result in 
the investigation of special types of integral equations of the first kind with symmetric, 

nonregular kernels of complicated structure. Hence, we deal below with effective asymp- 
totic methods of solving such integral equations. 

An important achievement of the mentioned methods is that they can be used in both 

the solution of plane and three-dimensional (axisymmetric or nonaxisymmetric) contact 
problems. Taking this into account, the crux of asymptotic methods which have been 

developed will be expounded below in sufficient detail by means of the example of plane 
contact problems, and the just mentioned application of these methods to three-dimen- 
sional problems. 

It should be noted that the asymptotic methods elucidated here can be used success- 
fully to solve not only contact problems of elasticity theory, but also an entire series of 
mixed problems of mathematical physics, .namely, many mixed problems of hydro-aero- 
mechanics. 

1. General propcrtio of the kernel and the solution of the 
fundamental integral equation of plane nonclr,ricrl contact 
problems. Let us consider an integral equation of the form 

(1.1) 
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where h is some characteristic nondimensional parameter for any kind of contact prob- 
lem, and L E (0, 00). The kernel of the integral equation is 

co 

K (t) = 
s 

k@ cos ut du 
U 

(1.2) 

0 

where the function L(z)z’r will be even and meromorphic in the complex z = u $_ iv 
plane (the ratio of two quasipolynomials of the same order), real and regular for u = 0 
and lim-L(z)z” = A > 0 for z -P 0. As is known, such a function can be represented as 

L (4 
-m 

z Jc?&:.‘i* ?A2 
6, = - iz,, Tn = --iL (1.3) 

Here z, and 5, are the zeroes and poles in the u > 0 half-plane. Let us assume 
that the following estimate holds on the real axis as 1 P I+ 00 : 

L (4 1 
--lul [I + 0 (e‘” ‘“‘)I, 

v v>o (1.4) 

We shallcall a kernel K(t) of the form (1.2) with the described function L(u)u-i the 
“main variant”. A number of mixed problems for an elastic strip and an elastic wedge 

[8 and 91 reduces to the integral equation (1.1) with such a kernel. The theory expounded 
below is most complete and final for the main variant. In other contact problem cases, 
when some of the listed properties of the function L(u)u-1 are not satisfied, the results 

expounded below are either valid, or as a rule, can be modified appropriately. We pre- 
sent more details on this in Section 6. 

On the basis of the property (1.4), the kernel K(t) can be represented for all 

0 < I t I < 00 as PI 
K(t) = - In I t I + F (th F (t) = o?[L(u)--]c~~“t+e-Ud, S ‘II (1.5) 0 

where the function F(t) with all its derivatives is continuous in the mentioned range of 
variation in t . 

Let us assume that the function f(z) in the right side of (1.1) belongs .to the class 
Hr” (-i,i) (see [8], say), then on the basis of (1.5) the integral equation (1.1) can be 
represented as an equivalent integral equation of the second kind in L (--1,1) for n>O. 

PI 
cp (4 = 90 (4 + I s 1v1--sa d++)F.~+)d~ 

n2h~/l_l r---z _-l 

1 

cpo(z)= 
1’ it) f/i - z* d% 

T---2 1 
with the additional condition 

-1 

(1.6) 

1 1 

P= s 1 Cs f (t)dr 1 ’ dr s ~1(5)++] (i-7) 

-1 

cpWdS=m _1v-_t2-IC 

_-l I/l_ _-l 

On the basis of (1.6). the following two theorems can be proved. 
Theorem 1.1. If the solution of the integral equation (1.1) in the class L(-ill) 

exists for all h > 0, then it has the form 

(p(5) = cpo(z) + o(z)(i- 22) -‘It (1.6) 

where the function o(z) is continuous with all its derivatives for zE I- i,i]. 
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In order to formulate the second theorem, let us introduce the norm in the space of 
functions Hna (- p,fl) by means of the following relationship: 

The ore m 1.2. If solutions of the integral equation (1.1) and 

j cp.(E)K* (Q+=nf(z). lzi<i 

-1 

(MO) 

exist and are unique in the class of functions L(--l ,i) for I > A,, where 

B F (t) - Fe Nil, 
n 

= (-s/h, ,,A) Q e (iii) 

then the following estimate is valid: 

11 cp(z) - cp,(z) II ~~-~~__~,~.,bSh;~ Wi-- 4-% D = const (l.i2) 

By virtue of Theorem 1.9, the following lemma is of interest. 
Lemma 1.1. If R,(t) has the form (1;2) and 

1 L (u) u-1 - L+ (u) u-1 I < 6(u~ + cp 
then (1.11) is valid for n = 1. ( 

p; p;yg (1.13) 

Theorems 1.1. 1.P and Lemma 1.1 disclose broad possibilities for an approximate 
solution of the integral equation (1.1). 

Henceforth, to simplify elucidation of the material we limit ourselves to the examina- 
ion of the case f(z) E i, particularly since the solution of (1.1) can be found by means 

of the known solution for f(z) s 1 even for the general case [lo]. 

2. Alymptotlc solution of the integral equrtion (1.1) for 
large value8 of the parameter I,. Let us note that for large 1 the variable 

t=g- t)/k < Z/k is small, and we represent P(r) in the form of the following series 

PI: 
P (1) = 5 lz,P (2-i) 

n=o 
where the coefficienu an are 

00 /h+-i+e- du 

S I4 
9 

a, = (-v cn 
ol j- IL (4 - 11 tP1 du (2.2) 

0 0 

(n=l, 2,...) - 
On the basis of 0.4) it can easily be shown that for large n the following estimate holds 

for a, : I a, 1 = O(v-m) (2.3) 

It hence follows that the series (2.1) converges absolutely for 5 > 2/v. This estimate 
establishes the theoretical limits for using the approximate solutions of (1.1) which can 

be obtained on the basis of the expansion (8.1). 
Let us now seek the solution of the integral equation (1.1) as [8] 

cp (r) = s %I (z) A.-*” (2.4) 
n=o 

Substituting (‘2.1) and (2.4) into (1.6) and equating members on the right and left 
sides with identical powers of h, we obtain 
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[‘TV(<) 44r (r - E)’ + ‘#I (6) 2~1 (f - E)] dE etc. 

(2.5) 

The sequential determination of cp,,(z) from (i?. 5) is not difficult, after which the quan- 
tity Y,can be found from the relationship (1.7). Limiting ourselves to terms of order A--‘, 
we obtain [8] 

cp (2) = 

P= IT 
C 
ln2~++aoU1 ils - !I$+;+ + 0 (L*)]-’ 

(2.6) 

As a rule,(&6) yields sufficient accuracy for practice for % > 4/v. 
The elucidated method has been developed and utilized to solve a number of specific 

mixed problems of elasticity theory in [8 and 11 - 191. 

3. First method of reducing the fntagral equatfon (1.1) to an 
inffnitr algebraic ry8tem. Let us represent the function F(t) in the form(1.5) 
as the following double series in Chebyshev polynomials ci?O] : 

(3.1) 

We also expand the function O(Z) in (1.8) in a series of Chebyshev polynomials 

0 (2) = ; SPsi (2) (3 2) 
f=l 

Because of the properties of the functions F(t) and O(Z) mentioned above, the series 
(3.1) and (3. ‘2) converge uniformly, respectively, torF(t) in the set of variables 

(e, z) G [-i,iJ and any values of the parameter h > 0 and to o(z) for all z E [-i,1]. 

Now,substituting (1.5),(3.1),( 1.8) and (3.8) into the integral equation (1. l), we 
obtain the following infinite system of linear algebraic equations to determine the coef- 
ficients Si of the series (3.3) after a number of manipulations: 

“f=Rf+ 
$ 

aijZj @=I, 2,. . .) (3.3) 
j=l 

with additional condition 

PK’(ln21+ CM)= 1 + z aojZj (3.4) 
j=l 

Here 
Zi = S,(Zi)-*, Ufj =*- jCt.f,rj, R, = - PCq,o It-l (3.5) 

After having solved the infinite system (3.3). the condition (3.4) aids in determining P. 
. . The coeffrcrents aij of the infinite system (3.3) can be represented on the basis of 

(1.5) and (3.1).(3.5) as 
U{~ = (-i)‘+j+Qplj 

s 
m’L(ur!-il Jsf (F) Jsj (f) du (ifi>O) (3.6) 
0 

$OO=i, Pi0 = POj = 2, Pij = 4 
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The constant c&A) is given by Expression 

For large t; j and b the following estimate can be obtained for the coefficients aij 
on the basis of (1.4) : 

Uij = 0 
C 

paPw1 1 (4h)lP i”i+‘Jti4i_% * ’ 
=i+j (3.8) 

On the grounds of the fact that L(u) y Au for u + 0, we find for the coefficients ,q 

for small h. a{j - 0 for I # i, a{{ - i (3.9) 

It can now be proved that the infinite system (3.3) is quasi-completely regular for 
h > ,,W. For small values of I it becomes unstable. 

Therefore, the elucidated method of solving the integral equation (1.1) by reduction 
to the infinite system (3.3) will be effective only for sufficiently large values of the 
parameter 1. 

It is convenient to solve the infinite system by the method of reduction, because the 

truncated sysrem has an almost triangular matrix. Specific examples show that the pro- 
posed method of solution is actually effective for sufficiently large L since the accuracy 

necessary for practice is achieved in this case even when solving a truncated system con- 
sisting of two - four equations. 

The expounded method has been developed and utilized for the solution of a number 

of specific plane mixed problems of elasticity theory in r20 - 231. However, there are 
already vestiges in [2,5 and 83. 

4. Asymptotic tolutfon of the lntrgrrl equation (1.1) for 
tmell valuer of the prrrmeter A. Besides the properties of the function 
L(s) s-1 mentioned at the beginning of Section 1, we shall moreover assume that the 
following estimate hold in any regular b43 system of contours C, 

L(s)z-’ = 0 (I-‘) for k+ 00 (4.1) 

Utilizing (1.3) and (4.1). let us represent the kernel K(t) as the sum of residues at the 

poles tn 

K’(t) = i .?,ef<J ( *m =A {[&]j’ (4.2) 
??I=1 

It is hence seen that as ]tl + 00 

K(t) - exp (- x It]), Rex = Inf (Re yrn) (4.3) 

It usually turns out that x = v,. 
Let us now represent the integral equation (1.1) as an equivalent system of three inte- 

gral equations 
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under the condition 

cp(E)=o(Y)+Q+u(E), ICI<1 (4.6) 

The solution of (4.5) is found easily to be 

v(E) = (Aa)-’ (4.7) 

By a change of variable the integral equations (4.4) and (4.5) are reduced to just the 
one y 03 

I 
o@)K(~-t)d?=++ 

0 

1 [a (I).- (An)-I] K (; - T - t) dr 
(4.8) 

(0 < t < m) 

an 

For small a the asymptotic solution of (4.8) can be obtained by successive approxi- 
mations. At each step it is hence necessary to find the solution of the same Wiener- 

Hopf equation, but with different right sides. The zero approximation is found from Eq. 
03 

s co,,(‘~)K(r-t) dr=f- (Odt<w) 

0 

Let us obtain the solution q(r) of an integral equation such as (4.9) but with a more 
general right side ne- pr. To do this, let us first factorize r25] the function L(z)r-r 

- - K, (4 K_ (4, L (4 _ co (z+ i6 ) 

z 
K+(z)= J-j 2 t 

cn (a-. 

n=l (z + iTn) 
K-P)= fl(_ **n) (4.10) 

-1 
n 

It is seen from (4.10) that for regularity strips rZ5] to exist the complex constant Cc 
should satisfy the inequality Re p < v+ = inf (Rey,, Re 6,). 

On the basis of (4.1) and other properties of L (z) z -l it can be shown that the estimate 

K+(z) = O(Z“‘Z) for k + co (4.11) 

holds on any regular [i?4] system of contours C, . 
If it is assumed that the Fourier trasformant Q+(z) of the function r/s(i f SIP r) 00(r) 

tends to zero as z + 03, then by omitting traditional computations accompanying the 

utilization of the Wiener-Hopf method l-253. we obtain 

cu 

II,(r)= 2niK I(- ip) j 
e-iatda 

K, (a) (a + ip) = 
--CO 

(4.12) 

Let us note that by virtue of (4.11) the function q(t) has a singularity of the form t-‘/s 
as <t + 0 in complete conformity with Theorem 1.1. This singularity is expanded into 

a series in (4.1’2). 
It follows from (4.12) that for p = yk and t --, 00 

*l(r) - exp(- xt), He x = inf (Re 6,) 

It usually turns out that X = 81. 

(4.13) 

Solving (4.8) by successive approximations, and estimating each approximation on the 
basis of (4.3) and (4.13) we obtain that the solution of (1.1) for the main variant of the 
kernel K(t) and f(z) = 1 is representable for small k as 

cp (4 = Q, (4 + n;l [On* (I+ “) + co,* (?)I exp (-T) (4.14) 
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where @ (2) is 

to(=) =% (*+) +uo (i?) -((AX)-1 (6.15) 

The function 00(t) is the solution of (4.9) and the functions’ o,*(t) are determined 
successively from o. 00 

s 
on* (T) K ($ - t) dt = eaxn” 

I 
wg(7)K (+4)dT 

0 w. (fi.iG) 

@n+(T) = #o(r) - (A Q-f, 0 d;; t < 00 

as t-+ 0 #the functions o,*(t) have singularities of the form,?‘* as t +OO they decrease 
as exp (-xt) and as L -+ 0 will behave as O(i) for fixed t , 

As specific examples show, for practical purposes it is completely adequate to limit 
oneself to the first terms of a>(z) in (4. f4), As a rule this will assure the accuracy needed 
in practice for all L < 4/v. 

Let us note that sometimes it is more convenient to use in place of CD(z) 

(4.17) 

because, as is easy to show, the difference between them is on the order of exp (-2 x/h). 
The elucidated method is given in PO]. The main term of the asymptotic of the solu- 

tion Q(S) (or ip,*(z)) of (1.1) is obtained for small A and is used to solve a number 
of specific plane mixed problems of elasticity theory in [18, P6 - 291. For small B. the 
main term of the “symmetric” asymptotic of the solution of (1.1) has been obtained in 
[30 and 311, In a number of papers [14, 19, 32 and 331 problems have been investiga- 
ted for which the function L(u)u-i is different, in its properties, from the main variant 
described in Section 1, nevertheless the main term of the asymptotic of their solution 

has successfully been constructed for small ?., 

5, Second method of reduoing the integral equation (1.1) to 
an infinite algebraic ryrtsm. Substituting K(t) in the form (4.2) into the 
integral equation (4.8). we represent it as 

co co 

s @ (T) K (‘L: - t) dx’ = 3 i + 2 s,,,C,e-tym 
0 ?7t-1 

cm -7 \ [ co (7) - (dll)-l]e-“mdr 

3x 
Inverting the right side of (5.1) on the basis of(4.1-2), we obtain 

Substituting (5.3) into (5. ‘2) and integrating, we arrive at an infinite algebraic system 
in C, of the form X=A,X+B (5.4) 

It can be proved [34] that the system (5.4) is completely regular for sufficiently small 
h,and completely quasi-regular for all % < 00. 

It is clear that the method elucidated is effective for sufficiently small’ J,. It is con- 
venient to solve the system (5.4) by successive approximations. As a rule, it is possible 
to limit oneself to the zero approximation with sufficient accuracy for practice, namely, 
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to cm = 0. 

The expounded method has been developed and utilized to solve a number of specific 
plane mixed problems of elasticity theory in [34 and 351, but there are already vestiges 
in 125, 36 and 373. 

In conclusion, let us note that the methods of Sections 2 - 5 as a whole permit, as a 

rule, a complete investigation of any kind of mixed problem, and the representation of 
its solution in a form suitable for practical utilization. 

6. Some generrlirrtiona. Example. Three-dimenrlonrl (rxi- 
Bymmetric rnd nonrxirymmetrlc) nonclrr,icrl contact problem,, 
As has been noted above, in order to find the main part of the asymptotic of the solution 
of integral equation (1.1) for small I it is necessary to know the solution of the Wiener- 
Hopf integral equation (4.9). A solution in the form (4.1’2) is of no practical use since 
it is represented by a series and does not explicitly contain the singularity t<h in the 

neighborhood of t = 0. To obtain practically acceptable solutions of (4.9), the idea of 

approximate factorization 1381 can be utilized. 
For example, let us approximate the function L(u)u-l, described in Section 1 by the 

following expression 

(6.1) 

where the numbers B, C, Dn, E,, are all distinct, real and positive. The solution of 
(4.9) for the case (6.1) is found easily enough and explicitly contains the afore-men- 

tioned singularity. It should be noted that a whole series of nonclassical contact prob- 
lems of elasticity theory results also in the integral equation (1.1) with a kernel of (1.2) 
and (6.1) type. Hence, the case (1.2) and (6.1) merits special attention. 

Moreover. let us consider the least complex variant for simplicity 

L+(u)& = (us + i)“A (6.2) 

however, let us note that it reflects the nature of the general case (6.1) quite completely. 
The kernel R(s) for the variant (6.2) is the Macdonald function Ko(f). 
The problem ofimpressing an infinite bar die with a base 6 ‘(z, y) = &&‘v on an elas- 

tic half-space reduces to an integral equation with such a kernel. Here b = (a@-‘, 

f(t) = 6G(1 - v)-la-l, a is the half-width of the die, G the shear modulus, v the 

Poisson coefficient. The contact pressures are given by 

q(z, Y) = cp(z)e’aY (6.3) 

Moreover, still another dynamic mixed problem results in the integral equation (1.1) 
with the kernel &(t) Namely, let an infinite undeformed strip of width 2a be clamped 
rigidly to the surface of an elastic half-space: where a tangential force T = T,#, t is 
the time, acts on each unit length of the strip. Under the effect of these forces the strip 
is shifted by a quantity y(r) = vwx*. The distribution function of the tangential stresses is 

t(2, t) = q(z) ewt (6.4) 
where T(Z) is the solution of (1.1). Here 

h = (a~)-‘p-“~ G”*, f(z) = Gysa-r, 

where P is the density of the elastic half-space. 
The integral equation (1.1) with kernel K,(r) has been studied earlier in [39 and 401. 

The methods elucidated above are used for its solution here. 
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The asymptotic solution of the form (2.6) for large. 1 is not applicable in the consid- 

ered case since the asymptotic of the function F(t) is, in contrast to (2. l), for small L 

P (1) = i P (a;+ b, In 1 t I) (6.5) 
i=o 

However, modifying the scheme expounded in Section 2 somewhat, namely, seeking 
the solution q(z) of the integral equation (1.6) as a double series in powers of k-s and 
in In 3c, we obtain 

cp(4 = p- 
nvi -xs [ ( i + (I,+; br-~rln2~ 

> 
(i-2zs)~-s+o(h-4ln’21) 

3 
(6.6) 

P = nf (0) [oo + In 2L + (ai + br - br In 2k) J,q + 0 (k* In* 2k)]-1 

For the considered case of K(t) = Ko(t) , the constants in (6.6) are 

ao = O,ii59, a1 = 0.2790, b, = - 0.2500 (6.7) 

Let us note that the power-logarithmic asymptotic of the solution of nonclassical plane 

contact problems of the form (6.6) for large L has first been obtained and used to study 
specific problems in [41] and [42]. 

The main term of the asymptotic of the solution of the considered problem for small 
is obtained by means of (4.15) by first solving the Wiener-Hopf integral equation 

(4.9) for the variant (6.2). Let us present the final result 

erf ,‘r+ 12’ 
)/fit (erf x is the probability integral) (6.8) 

As can be shown on the basis of (4.8). a more exact solution of the integral equation 
(1.1) for the considered problem with small k adds terms on the order of exp.(-2/k) and 
higher to (6.8). 

On the basis of (6.8) we obtain for P 
1 

P = s q(e,dE=f(o) (~f1brf1/;---++ [ f I La+ ) 

2 s=- 
x L 

(6.9) 
-1 

Some results of calculations are given below for J. = 2 by using (6.6)( upper values) 
and (4.15).(6.8) and (6.9) (lower values) 

cp (0) 
1 

0.669, 

t- 
* 0.411, 

0.667, m- 0.407, { 

P 
t- i.94 1 

1.96 

The quantity II, is given by the relationship 

J, = lim cp(E)(i + Ef”, E + i (6.10) 

It is hence seen that the asymptotic solutions for large and small h merge with a suf- 
ficient degree of accuracy for practical purposes. 

It should be noted that the first method of infinite algebraic systems remains valid for 

the case (6.1). however, the second method of systems cannot successfully be extended 
to the case (6.1). 

In conclusion, let us briefly consider three-dimensional nonclassical contact problems. 
Nonclassical contact problems for an elastic half-space and a layer with a circular 

zone of separation of the boundary conditions here comprise a large group. Such prob- 
lems may, as a rule, be reduced to the solution of the following integral equation of the 
first kind with a symmetric nonregular kernel 
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1 

s ‘+%I (P) PK, (P / A, r I a) dP = Af,, (4 (O<.r<i) 
0 (6.11) 

K,, Q, 9 = fL (4 Jn (up) Jn (uv) du 
0. 

where L,(z) are Bessel functions,.and the function L(u) has the form (1.3), (1.4) or 

(6.1). 
All the methods of approximately solving (1.1) described in Sections 2 - 5 may be 

applied, with appropriate modifications, to study the integral equation (6.11). Namely, 
an asymptotic of (6.11) for large h has been obtained and used in [6, 13, 20 and 43 - 

531 to solve specific nonclassical contact problems. 
The first method of infinite algebraic systems has been developed and used in PO and 

541 to solve the integral equation (6.11). 
The main term of the asymptotic of the solution of (6.11) for small k has been 

obtained in (!ZO and 311. 
The second method of infinite algebraic systems has been developed for (6.11) in [35]. 
If the zone of separation of the boundary conditions on the surface of a half-space of 

a layer is not circular, then the corresponding nonclassical contact problems result in the 
solution of the following integral equation of the first kind with a nonregular difference 

kernel:ssV(P) K (“, ) 
-pA dP=2nf (Q) (Q ~a), K(t)=9;.(u)J,(ul)au 

I 
(6.12) 

n Q 
where Q is the domain of contact, R,o the distance between the points P and Q. The 

function L(u) has the form (1.3),(1.4) or (6.1). 
Only the methods elucidated in Sections 2 and 4 have already been used successfully, 

with appropriate modifications, for the approximate solution of (6.12). Namely, an 
asympotic solution of (6.12) for large h has been obtained and used in [7. 55 and 561 

to solve specific problems. The main term of the asymptotic of the solution of (6.12) 
for small-L has been constructed in [57]. Apparently even transfer of the first method 
of infinite algebraic systems to the case (6.12) will raise no obstacles. 

Finally, let us note that the methods of Sections 2 - 4 can successfully be utilized also 
to investigate the integral equation 

i ‘P,, (P) pdp f-L (up) Jn (ur) du = 1, (r) (a < r d b) (6.13) 

D a 
to which mixed problems for an elastic half-space with an annular zone of separation 

of the boundary conditions will reduce. Namely, an asymptotic of the solution of(6.13) 
has been obtained in [41] for large A-, and asymptotic solutions of (6.13) for small b 
(large e = a/b) have been obtained In 141, 58 - 611 by using methods analogous to 

those expounded in Section 4. 
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